What Is The Source of Water for Whitestown's System?

Whitestown's customers receive 100% of their water purchased by Whitestown Municipal Utilities (WMU), which originates from Citizens Water and is transported through WMU's distribution system.

The water supply for Citizens Water comes from several sources including White River and Fall Creek, as well as the Geist, Morse, and Eagle Creek Reservoirs. Citizens Water also supplements their supply through a number of wells for smaller areas which it serves directly.

Following treatment by Citizens Water, the source water is piped to a connection point adjacent to the Whitestown booster pumping station and then into the distribution system. These facilities are owned and operated by WMU. Protecting The Water Supply for the Whitestown System

To minimize the risk of groundwater contamination, a *Drinking Water Protection Program* has been implemented by Citizens Water in accordance with the state's Wellhead Protection Rules and local ordinances. This program involves:

- working with local planning teams and regulators,
- mapping of the drinking water protection areas,
- identifying potential sources of groundwater contamination,
- working with businesses to prevent spills and releases of chemicals, and
- preparing a contingency plan in case of contamination.
 For more information on drinking water protection and wellhead protection, visit <u>www.citizensenergygroup.com</u> or call Citizens Water at (317) 924-3311.

You Can Help!

Decisions you make about your water usage have an impact on water quality. Here are a few suggestions for actions you can take to help keep water supplies clean and plentiful.

- 1. Limit lawn watering to 2-3 times per week. The best time to water lawns and other plants is between 4:00am-7:00am.
- 2. Don't dump soap, motor oil, fats, grease, pharmaceuticals, or other waste products into house drains, storm drains, creeks, or streams.
- 3. Sweep driveways, sidewalks, and steps rather than hosing them off. Turn off garden hoses when not in use.
- 4. Check for leaks in your plumbing to save water and money.
- 5. Wash vehicles in grassy areas to prevent runoff into storm sewers.
- 6. Add rain barrels to your downspouts and incorporate rain gardens to your yard to collect water for watering plants or washing vehicles.
- 7. Dispose of outdated or unneeded medications properly (not down the drain).

Consumer Confidence Report

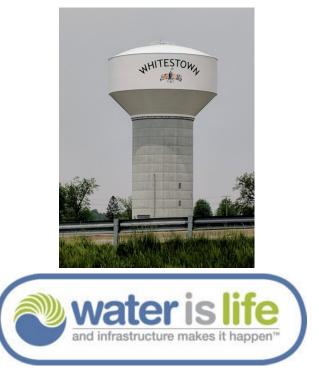
Whitestown Municipal Utilities PWSID IN5206014

For The Period of: January 1 to December 31, 2019 Whitestown, Indiana

This report is intended to provide our water customers with important information about your drinking water and the efforts made by Whitestown Municipal Utilities to provide safe

drinking water. As required by the U.S. Environmental Protection Agency (EPA), these drinking water reports provide information on where water comes from and how it compares to current standards.

Since all of Whitestown's water is purchased through Citizens Water, a Consumer Confidence Report from Citizens Water is also included.


If, after reading these reports, you have any questions or concerns, please contact us at (317) 733-8584.

Informacion Muy Importante:

Este informe contiene informacion muy importante sobre el agua que usted bebe. Traduzcalo o hable con alguien que lo entienda bien.

To Whitestown Customers...

On behalf of the Whitestown Town Council, we want to express our appreciation for having you as our customer. While we work diligently to provide the best service possible, we need your help too. If you see standing water on the road, in a ditch or in a yard, and it hasn't been raining – please call us. If you see anyone filling up water tanks directly from a hydrant – please call us immediately! If you see a vehicle has hit a hydrant – please call us! Help us become more proactive by reporting potential problems. Our customers help us provide better service and deliver a high quality water product and we welcome your involvement.

For additional information, please contact: Whitestown Director of Public Works Danny Powers Phone: (317) 769-6557 Fax: (317) 733-8674 dpowers@whitestown.in.gov

Annual Water Quality Report Whitestown System— Jan 1-Dec 31, 2019

Water Quality Test Results

The following tables contain scientific terms and measures, some of which may require explanation. Unless otherwise indicated, the data is from testing done between January 1 and December 31, 2019.

- AL (Action Level) The concentration of a contaminant which, if exceeded, triggers treatment or other requirements or action which a water system must follow.
- ALG (Action Level Goal) The level of a contaminant in drinking water below which there is no known risk to health. ALGs allow for a margin of safety.
- Avg (average) Regulatory compliance with some MCLs are based on running annual average of monthly samples.
- LRAA (*Locational Running Annual Average*) The average of sample analytical results for samples taken at a particular monitoring location during the previous four (4) calendar quarters.
- MCL (Maximum Contaminant Level) The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG (Maximum Contaminant Level Goal) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- MRDL (Maximum Residual Disinfectant Level) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MRDLG (Maximum Residual Disinfectant Level Goal) The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **ppm** (*parts per million*) or milligrams per liter; one ounce in 7,350 gallons of water.
- **ppb** (*parts per billion*) or micrograms per liter; one ounce in 7,350,000 gallons of water.

2019 Regulated Contaminants Detected

Lead and Copper. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Whitestown water system is a consecutive system to Citizens Water which also samples and monitors water quality.

Lead and Copper											
Substances Detected	Date Sampled	Substances Detected	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination		
Copper	2019	Copper	1.3	1.3	0.79	0	ppm	No	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.		
Lead	2019	Lead	0	15	1.2	0	ppb	No	Corrosion of household plumbing systems; erosion of natural deposits.		

Regulated Contaminants

Disinfectants and	Disinfection byproducts (DBP S)

Disinfectants and Disinfection By-products	Collection Date	*Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	2019	2	1-2	MRDLG = 4	MRDL= 4	ppm	No	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2019	36.2	11.3-43.2	No goal for the total	60	ppb	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2019	57.7	27.4-67.3	No Goal for Total	80	ppb	No	By-product of drinking water disinfection

*Based on a running annual average

Coliform Bacteria											
MCLG	Total Coliform MCL	Highest No. of Positive	Fecal Coliform or E. Coli MCL	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination					
0	1 positive monthly sample.	1	0	0	No	Naturally present in the environment.					

Citizens Energy Group--Indianapolis and Morgan County Consumer Confidence Report Data 2019

Name Open Open Open Open Appn ND Appn ND Appn ND Pertiliar, appk Charter Sequileed Organica: 73 µpd 3 µpd 3 µpd 3 µpd 2.0 µpd ND 2.0 µpd ND 2.0 µpd ND 2.0 µpd ND 2.0 µpd YES Intellated Standard (ppd) 4 µpd 4 µpd 4 µpd 4 µpd BUL 0.0 µpd ND 2.0 µpd YES Intellated Standard (ppd) 4 µpd 4 µpd BUL 0.0 µpd ND 0.0 µpd YES Standard Turkitivy (NTU) NA 1 NTU 0.0 µkd NIA	deposits deposits its & treatment itive	
Anim agent come agent (page)2 com2 com0.12 gent0.021 gent0.030-0.02 gantVTSNatural Natural Natural Natural Natural Natural Natural Natural 	deposits its & treatment itive	
Chronin (sph)100 sph100 sph100 sph100 sph100 sph100 sph100 sph100 sph100 sph14 sph0.06 . 1.4 sphVPSManual sphPatholis (sph)10 sph10 sph10 sph10 sph10 sph14 sph0.06 . 1.4 sphVPSManual sphChrone Taylout Sch20 sph10 sph10 sph10 sph10 sph12 sph2.0 sphNAO - 2.6 sphVPSManual sph24.0 (sph)70 spk3 sph3 sph3 sph3 sph3 sph2.0 sph0.0 c.0 sphVPSMathema sph24.0 (sph)10 sph3 sph3 sph3 sph3 sph3 sph3 sph3 sph0.0 c.0 sphVPSMathema sph10 sphNAA1 NTU0.08 kTU0.08 kTU0.00 tr.0 sph MTUVPSSph sphMathema sph10 sph (thi)NAA1 NTU0.08 kTU0.00 tr.0 sph MTUVPSSph sphMathema sph10 sph (thi)NAA1 NTU0.08 kTU0.00 tr.0 sph MTUVPSSph sphMathema sph	deposits its & treatment itive	
Langen Langen <thlangen< th=""> <thlangen< th=""> <thlangen< td="" th<=""><td>its & treatment itive</td></thlangen<></thlangen<></thlangen<>	its & treatment itive	
Fluctic (gen)4 gen4 gen10 gen10 gen10 gen10 gen0.0 gen	itive	
One Regulated Organics: 24-0 paph 72 gip 72 gip <th72 gip<="" th=""></th72>	c tank leachate	
2.00 pps) 70 pps 70 pps 70 pps 70 pps 2.00 pps ND - 2.0 pps VES Meebed Atraine (pp) 4 pps 4 pps 0.00 pps 2.8 pps ND - 2.8 pps VES Meebed Smaller (pp) 4 pps 4 pps 0.00 pps 0.00 pps 0.00 pps 0.00 pps 0.00 pps VES Meebed Tubidary NA 5 NT NA 0.004 NTU 0.001 - 0.00 NTU VES Sala Tubidary NA 6 NA 0.004 NTU 0.004 NTU 0.001 - 0.00 NTU VES Sala Secondary Oboling Water Standards: NA 0.004 NTU 0.004 NTU VES Sala Secondary Oboling Water Standards: NA 2.00 pps 38 pp 150 ppm ND - 0.75 ppd NA Natural deposite Manimum (ps) NA 2.00 ppm 34 ppd 150 ppm ND - 0.75 ppd NA Natural deposite Manimum (ps) NA 2.00 ppm 150 ppm ND - 0.75 ppd NA NA Natural deposite		
Annone (pp)3 pp)3 pp)9 pp2 ppND - 2 ppVESHere indepSinasone (pp)4 ppo)4 ppo)4 ppo)9 kpp9 kpp<		
Standard (pdg)4 pdg)4 pdg)9 DL9.30 pdg)9 DL9.30 pdg)VESMethodTotakidiyTotakidiyTotakidiyDistribution (DID)OUD (DID)Totaking (DID)OUD (DID)OUD (DID)OUD (DID)OUD (DID)Colspan="4">OUD (DID)OUD (DID)OUD (DID)OUD (DID)ACLO (ODD)Standard (DID)Standard (DID)Standard (DID)Colspan= (DID)OUD (DID)OUD (DID)ALLO (ODD)Standard (DID)Standard (DID)Standard (DID)Colspan= (DID)OUD (DID)ALLO (ODD)OUD (DID)OUD (DID)ALLO (ODD)Standard (DID)Standard (DID)Standard (DID)Colspan= (DID)OUD (DID)ALLO (ODD)OUD (DID)ALLO (ODD)OUD (DID) <td co<="" td=""><td>le runoff</td></td>	<td>le runoff</td>	le runoff
Syname (pgp)4 pgp)4 pgp)4 pgp,9 pQL0.30 pgp)8 DL 0.30 pgp,VESVesterTotaking: <td>le runoff</td>	le runoff	
Tendeday: TT Tackdady: (NTU) NNA 1 NTU 0.064 NTU 0.019 - 0.26 NTU YES Soli n Tackdady: (NTU) NA 9% 0.3 NTU NA NA NA 100% YES Soli n Tackdady: (NTU) NA NA NA NA 100% YES Soli n Secondary Diraking Webr Standards: MCLG (God Soli n Social not	le runoff	
NumberNMNMNM0.08 NTU0.09 NTU0.09 NTUNMNMNMTubbity (K below TT)NMSK 0 3 NTUNMNMNM100 kYESSalaSecondary Linear Standards:Secondary Linear Standards:SK 0 20 NTUNMNM100 kYESSalaSecondary Linear Standards:Secondary Linear Standards:SK 0 20 PonNM175 pplNM - 175 pplNMNMAurinum (ngh)NM20 pon04 pgn175 pplNM - 175 pplNMSecondary Linear StandardAurinum (ngh)NM20 pon04 pgn195 pml1190 - 01 polNMSecondary Linear StandardSecondary Linear StandardSecond		
Turbidity (\$ below TI) NA NA<		
Secondary standards are non-modalory guidelines established by the EPA to assist utilities in managing dinking wat considerations, and as take, ober, and coins. These contaminants are not considered to present a risk to human head present and the standards. Secondary standards. NCL (Gos) SMC. Secondary standards are non-modalory guidelines established by the EPA to assist utilities in managing dinking wat considered interval and the standards. NA Secondary standards are non-modalory guidelines established by the EPA to assist utilities in managing dinking wat standards. Alminum (geb) NA 250 pph 84 pph 175 pph ND - 175 pph NA NA Natal deposits. Choride (ppm) NIA 250 pph 64 ppm 156 pph 21 - 156 ppm NA Erceion of ratal leadeses(ppm) Indeposes (ppm) NIA 0.35 ppm 0.41 ppm 0.65 ppm ND - 0.65 ppm NIA Erceion of ratal leade Metalachlor (ppb) NIA 0.55 ppm 0.41 ppm 0.87 ppm NIA Erceion of ratal leade Metalachlor (ppb) NIA 0.55 ppm 0.41 ppm 0.87 pph NIA Erceion of ratal leade Metalachlor (ppb) NIA 0.50 ppm 1.57 pph NIA	unoff	
Bacchair both the state back and back the state back and back the state back the s		
Animum (ppb) NA 200 ppb 38 ppb 175 ppb ND - 175 ppb NA NA NA NA Chlorde (ppm) NA 220 pp 64 ppm 156 ppm 21-156 ppm NA NA Statut		
Chorde (ppm)NA250 pm64 pm156 pm21 · 156 ppmNANANatural deposite additionalHardness (ppm)NANA312 ppm471 ppm160 · 471 ppmNAErsion of natural leadInon (ppm)NA0.3 ppmND0.661 ppmND · 0.061 ppmNAErsion of natural leadMaganese (ppm)NA0.05 ppm0.41 ppm0.87 ppmND · 0.051 ppmNAHericid leadMaganese (ppm)NA0.05 ppm0.41 ppm0.87 ppmND · 0.43 ppbNAHericid leadMetolachtor (ppb)NANA0.11 ppb0.43 ppbND · 0.43 ppbNAHericid leadMick (ppb)100 ppbNA6.5 · 8.57.708.236.96 · 8.23NAHericid leadSolum (ppm)NA500 ppm45 ppm167 ppm7.9 · 167 ppmNAIeadSulfak (ppm)NA500 ppm45 ppm167 ppm7.9 · 167 ppmNAIeadSulfak (ppm)NA500 ppm45 ppm10.0 · 57 ppbNAIeadChybopordism (org 10.1)NA10.7196ND · 167 ppmNAIeadChybopordism (org 10.1)NANA10.7196ND · 160 pyst / 10.NANatural is of the second of natural is of the second of natural is of the second of natural is of the second of		
Chords (ppm) N/A 250 ppm 64 ppm 156 ppm 21-156 ppm N/A add Hardness (ppm) N/A N/A 312 ppm 471 ppm 160-471 ppm N/A Erresion of nat leads tron (ppm) N/A 0.3 ppm N/D 0.061 ppm N/D 0.061 ppm N/A Erresion of nat lead Manganese (ppm) N/A 0.05 ppm 0.41 ppm 0.87 ppm N/D 0.087 pph N/A Erresion of nat lead Metolachlor (pbb) N/A 0.05 ppm 0.41 ppm 0.87 ppm N/D 0.43 ppb N/A Erresion of nat lead Metolachlor (pbb) N/A 100 ppb N/A BDL 2.1 ppb N/A Erresion of nat lead Solum (ppm) N/A 65 - 85 7.70 8.23 6.96 - 8.23 N/A Iead Solum (ppm) N/A 150 ppm 167 ppm 12 - 125 ppm N/A Iead Solum (pm) N/A 150 ppm 167 ppm N/D - 32 cocysts / 10L N/A Iead		
Hardness (gpm) NA N/A 312 ppm 471 ppm 150 - 471 ppm N/A Ieado tron (ppm) N/A 0.3 ppm N/D 0.061 ppm ND - 0.061 ppm N/A Froison of nat leado Manganese (ppm) N/A 0.05 ppm 0.41 ppm 0.87 ppm ND - 0.67 ppb N/A Froison of nat leado Metolachlor (ppb) N/A 0.05 ppm 0.41 ppm 0.87 ppm ND - 0.43 ppb N/A Herbididididididididididididididididididid	itive	
Iron ppm) NNA 0.3 ppm ND 0.061 ppm NN-0.061 ppm NNA Iead Manganese (ppm) NNA 0.05 ppm 0.41 ppm 0.87 ppm NN-0.87 ppb NNA Errosion of nature state Metolachlor (ppb) NNA 0.11 ppb 0.43 ppb NN-0.43 ppb NNA Herbidd Nickel (ppb) 100 ppb NNA 6.5 - 8.5 7.70 8.23 6.96 - 8.23 NNA Errosion of nature state Sdidun (ppm) NNA 5.5 - 8.5 7.70 8.23 6.96 - 8.23 NNA Errosion of nature state Errosion of	hing	
Manganese (ppm) N/A 0.05 ppm 0.41 ppm 0.87 ppm ND<0.67 ppb N/A Iead Metolachlor (ppb) N/A N/A 0.11 ppb 0.43 ppb ND<0.43 ppb	hing	
Nickel (ppb) 100 ppb N/A BDL 2.1 ppb ND - 2.1 ppb N/A Erosion of nat lead pH (Standard Units) N/A 6.5 - 8.5 7.70 8.23 6.96 - 8.23 N/A Iead Sodium (ppm) N/A N/A 38 ppm 125 ppm 12-125 ppm N/A Iead Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Iead Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Iead Zinc (ppb) N/A 5000 ppb BOL 5.7 ppb ND - 5.7 ppb N/A Iead Untreated Source Water: Sodium (org/10L) N/A 1.5 32 ND - 32 ocysts / 10L N/A Neturally pr Coptosporidium (org/10L) N/A N/A 1.0.7 196 ND - 196 oysts / 10L N/A eavitally pr TOC (Untreated Water, ppm) N/A N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A		
Nickel (ppb) 100 ppb NA BOL 2.1 ppb ND - 2.1 ppb NA lead pH (Standard Units) NA 6.5 - 8.5 7.70 8.23 6.96 - 8.23 NA Erosion of nat Sodium (ppm) NA N/A 38 ppm 125 ppm 12 - 125 ppm N/A Erosion of nat Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Erosion of nat Zinc (ppb) N/A 5000 ppb BDL 5.7 ppb N/D - 5.7 ppb N/A Natural (Untreated Source Water: Sulfate (pg/10.) N/A N/A 1.5 32 ND - 5.7 ppb N/A Natural (Giardia (org/10.) N/A N/A 1.5 32 ND - 5.7 ppb N/A Natural (Clyptosportidum (org/10.) N/A N/A 1.5 32 ND - 32 oocysts / 10. N/A Sulfate (pg/10.) N/A Natural (eerot on environ TOC (Untreated Water, ppm) N/A N/A	le runoff	
Sodium (ppm) N/A N/A N/A 38 ppm 125 ppm 12 - 125 ppm N/A Erosion of nat lead Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Erosion of nat lead Zinc (ppb) N/A 5000 ppb BDL 5.7 ppb ND - 5.7 ppb N/A NAA Natural of lead Untreated Source Water: N/A N/A N/A N/A Natural of lead Giardia (org/10L) N/A N/A 1.5 32 ND - 32 cocysts / 10L N/A Natural of lead TOC (Untreated Water, ppm) N/A N/A 10.7 196 ND - 196 cysts / 10L N/A Natural of lead TOC (Untreated Water, ppm) N/A N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A Natural of lead Natural of lead Choirine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES Water additive micro Copper (apm) [2019 Data] 1.3 ppm 1.3 ppm 0.14		
Sodium (ppm) N/A N/A N/A 38 ppm 125 ppm 12 - 125 ppm N/A Erosion of nat lead Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Erosion of nat lead Zinc (ppb) N/A 5000 ppb BDL 5.7 ppb ND - 5.7 ppb N/A NiA Itead Untreated Source Water: Sulfate (prm/) N/A N/A 1.5 32 ND - 32 cocysts / 10L N/A Natural of transition of nat lead Giardia (org/10L) N/A N/A 1.5 32 ND - 32 cocysts / 10L N/A Natural of transition of nat lead TOC (Untreated Water, ppm) N/A N/A 1.0.7 196 ND - 196 cysts / 10L N/A Natural of transition of nat sufficianapolis Disinfectant Residual: MRDLG MRDLG MRDL N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A Water additive micro Copper (add (add)) (add) for AL VES Corrosion of cus (0 of 55 > AL) VES Cor		
Sulfate (ppm) N/A 250 ppm 45 ppm 167 ppm 7.9 - 167 ppm N/A Erosion of nat lead Zinc (ppb) N/A 5000 ppb BDL 5.7 ppb ND - 5.7 ppb N/A Natural (lead) Untreated Source Water:		
Zinc (ppb) N/A 5000 ppb BDL 5.7 ppb ND - 5.7 ppb N/A Natural of the second se	tural deposits;	
Untreated Source Water: N/A N/A 1.5 32 ND - 32 oocysts / 10L N/A Giardia (org/10L) N/A N/A 1.5 32 ND - 32 oocysts / 10L N/A Giardia (org/10L) N/A N/A 10.7 196 ND - 196 cysts / 10L N/A Giardia (org/10L) N/A N/A 10.7 196 ND - 196 cysts / 10L N/A Giardia (org/10L) N/A N/A 10.7 196 ND - 196 cysts / 10L N/A TOC (Untreated Water, ppm) N/A N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A enviroi Indianapolis N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A enviroi Chorine (as Cl2) 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES micro Copper and Lead (Indianapolis) MCLG AL 0.14 ppm 1.1 ppm (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0		
Cryptosporidium (org/10L)N/AN/A1.532ND - 32 oocysts / 10LN/AN/AGiardia (org/10L)N/AN/A10.7196ND - 196 cysts / 10LN/AN/ATOC (Untreated Water, ppm)N/AN/A10.7196ND - 196 cysts / 10LN/AN/ATOC (Untreated Water, ppm)N/AN/A3.8 ppm6.0 ppm2.6 - 6.0 ppmN/AN/AenvironIndianapolisMRDLGMRDLGMRDLVVVVVVVVChlorine (as Cl2)4 ppm4 ppm1.7 ppm2.9 ppm0.020 - 2.9 ppmYESmicroCopper and Lead (Indianapolis)MCLGALVVMater additiveCopper (ppm) [2019 Data]1.3 ppm1.3 ppm0.14 ppm1.1 ppm0.27 ppm is the 90th Percentile (0 of 55 > AL)YESCorrosion of cusLead (pb) [2019 Data]0 ppb15 pbb2.6 pbb15 ppb0 of 55 > AL)YESCorrosion of cusOrganic Disinfection By-products (Indianapolis)080 ppb54 ppb54 ppb54 ppbBy-product of	Jeposits	
Giardia (org/10L) N/A N/A N/A 10.7 196 ND - 196 cysts / 10L N/A TOC (Untreated Water, ppm) N/A N/A N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A Naturally previous Indianapolis MRDLG MRDL MRDL Value Value Value Chlorine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES micro Copper and Lead (Indianapolis) MCLG AL AL Corrosion of cus Corrosion of cus Lead (ppb) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm 0.27 ppm is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb 0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 0 80 ppb 54 ppb 54 ppb By-product of		
TOC (Untreated Water, ppm) N/A N/A 3.8 ppm 6.0 ppm 2.6 - 6.0 ppm N/A Naturally previous environments Indianapolis MRDLG MRDLG MRDL Value Value Value Value Disinfectant Residual: MRDLG MRDL Value		
Indianapolis Disinfectant Residual: MRDLG MRDL Choirine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES Water additive micro Copper and Lead (Indianapolis) MCLG AL Corrosion of cus Copper (ppm) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm 0.27 ppm is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb 4.8 ppb is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 0 ppb 15 ppb 2.6 ppb 15 ppb 0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 80 ppb 54 ppb 54 ppb By-product of	esent in the	
Disinfectant Residual: MRDLG MRDL Disinfectant Residual: 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES Water additive milerer Chlorine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES Water additive milerer Copper and Lead (Indianapolis) MCLG AL Corrosion of cus Corrosion of cus Corrosion of cus Copper (ppm) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm 0.27 ppm is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb 4.8 ppb is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 0 ppb 15 ppb 2.6 ppb 15 ppb (0 of 55 > AL) YES Corrosion of cus	nment	
Chlorine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES Water additive micro Copper and Lead (Indianapolis) MCLG AL Copper (ppm) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm 0.27 ppm is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb 4.8 pp is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Corganic Disinfection By-products (Indianapolis) 0 ppb 15 ppb 2.6 ppb 15 ppb 4.8 pp is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus		
Chlorine (as Cl2) 4 ppm 4 ppm 1.7 ppm 2.9 ppm 0.020 - 2.9 ppm YES micro Copper and Lead (Indianapolis) MCLG AL Second Secon	used to control	
Copper (ppm) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm 0.27 ppm is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb 4.8 ppb is the 90th Percentile (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 80 ppb 54 ppb 54 ppb By-product of		
Copper (ppm) [2019 Data] 1.3 ppm 1.3 ppm 0.14 ppm 1.1 ppm (0 of 55 > AL) YES Corrosion of cus Lead (ppb) [2019 Data] 0 pb 15 ppb 2.6 ppb 15 ppb (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 0 pb 15 ppb 2.6 ppb 15 ppb (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 0 pb 15 ppb 54 ppb 54 ppb By-product of		
Lead (ppb) [2019 Data] 0 ppb 15 ppb 2.6 ppb 15 ppb (0 of 55 > AL) YES Corrosion of cus Organic Disinfection By-products (Indianapolis) 80 ppb 54 ppb 54 ppb By-product of	stomer plumbing	
80 ppb 54 ppb By-product of	stomer plumbing	
	f chlorination ment	
60 ppb 40 ppb By-product of	f chlorination ment	
Microorganisms (Indianapolis)		
E coli 0 1 ND ND YES Human and anir	mal fecal waste	
E com res relation res res relation res res	esent in the	
	mient	
Radionuclides (Indianapolis): [2019 Data]		
Combined Radium (-226 & -228) 0 5 pCi/L N/A 1.73 pCi/L 0.5 - 1.73 pCi/L YES Erosion of nate	tural danaaita	
Combined Uranium 0 30 ppb N/A 9.7 ppb ND - 9.7 ppb YES Erosion of nate		
Gross Alpha, Excl. Radon & Uranium 0 15 pCi/L N/A 6.7 pCi/L -0.28 - 6.7 pCi/L YES Erosion of nat *EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in driv		
Additional Detected 2019 Monitoring Required by EPA (UCMR 4) do not have health-based standards set under the Safe Drinking Water Act (SDWA).	tural deposits	
Haloacetic acids (HAA5) N/A 60 ppb 24 ppb 35 ppb 4.2 - 35 ppb N/A By-product of treatr	itural deposits itural deposits nking water and	

Citizens Energy Group--Indianapolis and Morgan County Consumer Confidence Report Data 2019

Contaminant	MCLG (Goal)	MCL (Limit)	Average of All Samples	Maximum of All Samples	2019 System Wide Range	Compliance Achieved	Possible Source
Haloacetic acids (HAA6)	N/A	N/A	11.9 ppb	19 ppb	3.8 - 19 ppb	N/A	By-product of chlorination treatment
Haloacetic acids (HAA9)	N/A	N/A	35 ppb	52 ppb	7.4 - 52 ppb	N/A	By-product of chlorination treatment
Manganese (ppm)	N/A	0.05 ppm	0.41 ppb	0.87 ppb	ND - 0.87 ppb	N/A	Erosion of natural deposits; leaching
Morgan County							
Disinfectant Residual:	MRDLG	MRDL					
Chlorine (as Cl2)	4 ppm	4 ppm	1.2 ppm	1.8 ppm	0.70 - 1.8 ppm	YES	Water additive used to control microbes.
Copper and Lead (Morgan County)	MCLG	AL					
Copper (ppm) [2018 Data]	1.3 ppm	1.3 ppm	0.070 ppm	0.16 ppm	0.12 ppm is the 90th Percentile (0 of 24 > AL)	YES	Corrosion of customer plumbing
Lead (ppb) [2018 Data]	0 ppb	15 ppb	1.2 ppb	7.7 ppb	3.5 ppb is the 90th Percentile (0 of 24 > AL)	YES	Corrosion of customer plumbing
Organic Disinfection By-products (Morgan County)							
Total Trihalomethanes (TTHMs)	N/A	80 ppb	11 ppb	11.3 ppb	10.9 - 11.3 ppb	YES	By-product of chlorination treatment
Haloacetic acids (HAA5)	N/A	60 ppb	3.2 ppb	3.2 ppb	3.1 - 3.2 ppb	YES	By-product of chlorination treatment
Microorganisms (Morgan County)							
E coli	0	1	ND	ND	ND	YES	Human and animal fecal waste
Total Coliforms	N/A	5.0%	ND	ND	ND	YES	Naturally present in the environment